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Abstract—The influence of slip-velocity at a porous surface is studied in detail for a parallel fat

membrane system assuming fully-developed flow. The effect of slip coefficient on velocity profiles,

pressure gradient and concentration polarization in ultrafiltration is examined. The equations of motion

are solved by the regular perturbation method. The coupled diffusion equation in the boundary layer is
solved using a finite difference scheme.

NOMENCLATURE

A;B,E,F; coefficients in the matrix

C’
Co»
c

Cw

equations;

solute concentration ;

inlet solute concentration;

solute concentration at membrane surface;

¢ = ¢p/(1 —¢), mixing-cup average solute

C,
C

pr

concentration;
c/cg;
¢,/C— 1, concentration polarization;

(Co)e/{C )y~ o, normalized concentration

D,
h,
k,‘
K,
p,\"

Po»
P,

Pe,
Re,

Re,,
i,
fig,

ug,
U,
U,

Vs

X,
¥

polarization;

solute diffusivity;

half-width of channel;

membrane permeability;

an integration constant;

pressure in the channel at a given value of
X3

inlet pressure in channel;
(Po—p.)/(p153/2);

v, h/D, Peclet number;

4y /v, Reynolds number for flow entering
the channel;

/v, wall Reynolds number;

velocity component in x-direction ;
average velocity over the channel at
channel inlet ;

average velocity over the channel at a given
value of x;

uftiy;

(u/d,),~,, normalized slip velocity;
{u/a),- ,, normalized slip velocity;
velocity component in y-direction ;
velocity of fluid through membrane;
viv,,;

axial distance from channel entrance;
distance normal to phase boundary.
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Greek symbols
%oy 1/Pe, normalized diffuston coefficient ;
o, surface characteristic of membrane;
B;»v;, parameters used in numerical calculations;
£, V,/ig;

4, yih;
i, viscosity ;
v, kinematic viscosity ;
& v, X/igh = 4Re x/Reh, fraction of water
removed at a given value of x;
0, solution density;
o, k2 /ah, slip coeflicient ;
v, stream function.
Superscripts

oo
EINE ]

ist, 2nd and 3rd-order derivatives.

1. INTRODUCTION

THE HIGH flux nature of the skin type, anisotropic
ultrafiltration membranes results in the rapid build-
up of solutes at the membrane surface leading to the
formation of a polarized gel-layer. This phenomena,
often referred to as concentration polarization, is
highly flux-limiting and, consequently, has been
studied extensively [4, 7].

Brian [5] solved the problem of concentration
polarization for low molecular weight solutes (re-
verse osmosis) assuming laminar flow in a channel
with parallel flat membranes. Infinite-series and finite
difference solutions of the diffusion equation in the
boundary layer were obtained. The results of the two
solutions were in excellent agreement. In order to
solve the diffusion equation, the velocity field must
first be specified. Brian used the solution of Berman
[3], modified to exclude the terms containing the
wall Reynolds numrber which is negligibly small for
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reverse osmosis. In ultrafiltration, where the flux
rates are considerably higher, wall Reynolds number
is not negligible and, hence, cannot be ignored.

Berman obtained a first-order perturbation sol-
ution for the velocity field in the case of a
homogeneous fluid flowing between parallel porous
walls with a uniform withdrawal flux through the
wall. In his analysis he tacitly assumed the zero-slip
boundary condition which characterizes flows with
solid bounding walls. Beavers and Joseph [1],
however, showed the existence of a slip velocity at a
porous surface on the basis of theoretical arguments
and experimental verification. In later studies,
Beavers er al. [2] and Kohler [6] showed that their
experimental results agreed remarkably well with
analytical predictions, thus lending further support
to the slip flow model.

The present work is an attempt to study the effect
of non-zero tangential velocity (the so-called slip
velocity) on velocity field, pressure gradient and
concentration polarization in ultrafiltration process-
ing. The ramifications of slip velocity in predicting
flux rates in ultrafiltration are examined.

The equations of motion in two-dimensions are
solved by a first-order perturbation method assum-
ing slip velocity at the membrane surface. The
diffusion equation is solved by a finite difference
technique. The results of the solutions are discussed
in Section 4 and the conclusions are presented in
Section 5. Analysis of the tubular flow system is
given in a subsequent paper [ 11].

2. MATHEMATICAL FORMULATION

2.1. The equations of motion

Consider a case in which fluid containing macro-
molecular solutes flows within the channel between
two parallel, flat ultrafiltration membranes, as shown
in Fig. 1. The width of the membranes is assumed to
be very large relative to the membrane spacing, and
product water is assumed to be permeating both the
upper and the lower membranes; thus the flow will
be assumed to be two-dimensional and symmetrical
about the midplane of the channel of half-thickness
h. This implies that the flow is assumed to be
laminar, and natural convection effects are assumed
to be negligible. It is also assumed that fluid is
incompressible and operation is steady-state.

Permeate

Permeate

F16. 1. Parallel flat membranes.

Under the assumed conditions, the pertinent
equations of linear momentum and continuity with
the requisite boundary conditions are:

du v ou 1 ap 3%u 1 P*u
Uty = = —=+7353 ) (D)
Ox  hdd p Ox ox*  h* 04

@+£@~_L@+‘, &_{_J,@) (2)
“axTheiT Tphait\ax2 T W E)

du 1o

é;+55/i= 3 3)
kl/’Z au
u(x, £1) = . (5&)’ 4)
du
(5})):0 =0, 5)
U(X,O) =0, (6)
vix, £1) = v,, (N
where
Y
h=7

Equation (4) is the slip-flow boundary condition
of Beavers and Joseph [1]. The slip velocity at the
membrane surface is proportional to the shear rate
at the permeable boundary. This slip velocity is
connected with the presence of a thin layer of
streamwise moving fluid in the boundary region just
below the permeable surface. The fluid in this layer is
considered to be pulled along by the flow above the
porous surface. ¢{=k*?/ah} is the stip coefficient
where k is the permeability of the membrane matrix,
and « is a dimensionless constant dependent on the
surface characteristics of the membrane. When k =0,
equation (4) reduces to the no-slip condition appro-
priate to a solid wall.

Equation (7) is the condition for constant per-
meation flux. It is assumed that this is valid. No
solutions have been obtained and/or reported for
variable permeation flux along the longitudinal
position for high wall Reynolds numbers.

For a two-dimensional incompressible flow, a
stream function ¥ (x, A} exists such that,

R 1 oy
u(x, ft)—?z an (8)

oy

; = ——= 9
v(x, 1) e ©
and the continuity equation (3) is satisfied.
A suitable choice of stream function is,

Y(x, 2) = [hiig—v,x] f(4), (10)

giving for the velocity components by equations (8)
and (9),
ulx, Ay = {ﬁo B %]f”(/i), (11

v(A) = v, f(4). (12)
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In these equations f(A) is some function yet to be
determined. Under the assumption of constant
permeation flux v, the y component of velocity, v,
becomes a function of 1 only. Using the standard
analysis, equations (1) and (2) can be rephrased:

dio,{ ., - IR
a{‘h‘(fz“ﬂ +R—ewf >]-0, (13)

where

This equation can be integrated to
Re, (f?~ff")+f" =K,

where K is the constant of integration.

The new set of boundary conditions is similarly
obtained by substituting equations (11) and (12) in
equations (4)-(7). Thus

(14)

770 = —¢i"(1), (15)
1710) =0, (16)
10y =0, {17
=1 (18)

Equation (14) is the so-called Falkner-Skan
equation. The solution using these boundary cen-
ditions is described in Section 3.1.

2.2, The diffusion equation

It is assumed that the solute concentration is
uniform over the channel cross-section at the
channel inlet. As the solution flows down the channel
and permeate is removed through the membranes, a
solute-concentration profile develops and the solute
concentration at the membrane surface increases
along the length of the channel. Assuming steady-
state operation and both diffusion and convection of
solute in the transverse and longitudinal directions, a
solute material balance on a differential volume
element yields the following partial differential
equation (in dimensionless form)

aoc oc 1 [¢*C 8*C
JRSATE P A B Ll
VatVa Pe(ﬁlz-H 6cjz>’ 19)
where
U==, v=2, c=5, 1=2,
7 v, Cq h
._Uw X _4Re, x P _u,h
“‘ao K- Re hn ¢T D>
é=li~w, Re=4u0h
i v

For v,, « iy, ¢* is very small and hence the second
term on the right-hand side of equation (19) is
negligible. This shows that diffusion in the longitu-
dinal direction is negligibly small. Equation (19) can
then be rewritten as:

oc

ac | oC

o, aC
EI !

v 0T

(20)
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where
1
g = 73—6’
The boundary conditions are:
C@0,4) =1, 210
(95) -0, @2)
04 Ja=o
aC)
CE D=agl =] . (23)
(~ ) a0<5l/ Jo

Equation (23} is the so-called gel polarization
model. It assumes that the membrane is completely
retentive to solute and that the convective flow of
solute to the membrane surface is equal to the
diffusive back-transport of solute from the con-
centrated polarized layer to the bulk-solution. This
steady state is reached in less than a minute [4].

The solution of equation (20) with the appropriate
boundary conditions is reported in the Appendix
incorporating the results of velocity profiles U and V,
obtained from Section 3.1.

3. METHODS OF SOLUTION

3.1. The perturbation solution

The third-order, nonlinear, ordinary differential
equation (14), suggests a perturbation solution if the
perturbation parameter Re,, is small. Equations
exhibiting certain essential features like non-
linearities often preclude exact analytical solutions.
Even if the exact solution of a problem can be found
explicitly, it may be useless for mathematical and
physical interpretation or numerical evaluation,
Thus, in order to obtain information about solutions
of equations, we are forced to resort to approxi-
mations, numerical solutions or combinations of
both. Foremost among the approximation methods
are regular perturbation methods (see, e.g. Nayfeh
[8])- According to these techniques, the solution is
represented by the first few terms of a perturbation
expansion, usually not more than two terms. The
expansions may be carrted out in terms of a
parameter which appears naturally in the
equations—e.g. the wall Reynolds number, Re,, in
this case—or which can be artificially introduced for
convenience.

The solution of equation (14) for small Re,, may
be expressed in a power series as

S = foA+ [ (DRe,

+f1(A)Re}+ f(Red)+... (24)

and

K = Ky,+K,Re,+K,Re2+K;Rel+... (25)

Here the f,’s and K,’s are taken to be independent of
Re,,. Substituting equations (24) and (25) in equation
{14) and collecting terms of like powers of Re,, leads
to the following set of equations:

zero order:

18" = Ko, (26)
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first order:

N =Ki= 1"+ 1o 15, 27

second order:
fi' =K, +,f0. 1

+ 10 = 2o 1 (28)

The boundary conditions to be satisfied by the f,’s
are from equations (15)-(18):

LM+ ¢f, (1) =0, (29)
ful0) = £,7(0) =0 (30)
Joll) =1,
1) =0 for n> 1. (K1)

Equations (26)-(28) are ordinary, linear, third-order
equations which are readily solved to give successive
approximations to f(4).

The first-order perturbation solution gives for f(4)
and K:

. s . .. Re
f(A)= (b4 +by4)— 330 (e A+ +e3d) (32)
and

. 9R
K= -3¢ ;564, (33)

where b, b,, ¢}, ¢,, ¢; and ¢, are functions of ¢ and
are defined in the Appendix.

For the no-slip velocity case, that is, when ¢ =0,
equations (32) and (33) reduce to the solution of
Berman [3]. Berman, using a second-order per-
turbation calculation, found the coefficient of Re2 in
K to be 002 Thus, a first-order solution is
acceptable.

The velocity profiles are obtained by substituting
equation (32) in equations (11) and (12). Hence

4Re .\‘j
=128l XN 3 52
U (1 - h'[(\bl) +by)
Rew (76,08 £ 3¢,02 +¢ )] (34)
~ 550 U 2 A6
= (by i3+ byi) — 22 (e, 47+, 2+ e3d). (39)

280

Normalized axial component of velocity can be
readily attained from equation (34) to give

u R

e = (3b,42+b,) - 350 —2 (Te A%+ 3c,A% 4 ¢5), (36)
where

I B 4Re,, x .

uziﬁziluu)dl—l— o t=1-E (37)

Normalized pressure gradient P, is obtained from
p‘ __2K[x 2Re,
2pu0 " Re h Re

equations (1) and (2) and (14) as
©\2
G} e
3.2. The finite difference solution
The diffusion equation in the concentration bound-
ary layer (20), with the velocity field obtained from

p="

equations (34) and (35), is solved by a finite
difference scheme implicit in 1. The solution pro-
cedure is outlined in the Appendix.

4. RESULTS AND DISCUSSION

4.1. Velocity profiles

Figure 2 is a plot of u/u, vs 2 for an entrance
Reynolds number of 1000 and a longitudinal
position x/h, equal to 500. The curves are plotted for
slip coefficient, ¢ equal to 0, 0.1 and 0.5, and a wall
Reynolds number, Re,, of 0.1. According to Kohler
[6], values of ¢ up to 0.5 are reasonable. As expected,
the velocity at the membrane surface (A =1) is 0
when ¢ is 0. As the slip velocity increases with
increasing ¢, the wall shear decreases and the
profiles become flatter, approaching those for plug
flow.

sl Rw=0.
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F1G. 2. Velocity profiles for Re, = 0.1 based on entrance
Reynolds number for channel flow.

Evidence of the effect of ¢ on normalized slip
velocity u? is shown in Fig. 3. u® increases with ¢
and appears to approach an asymptotic value. u?
decreases as x/h increases indicating that at a point
further downstream, the slip velocity is decreased. A
similar plot at a wall Reynolds number of 0.2 is also
shown. It is easily seen that u® is considerably
reduced when Re,, increases from 0.1-0.2.

Velocity profiles in the form u/iz vs 4 are plotted in
Fig. 4. This is similar to that for u/iiy vs A except that
it is independent of entrance Reynolds number and
longitudinal position. This is evident from equation
(36). The velocity profiles are essentially independent
of wall Reynolds number except when Re,, = 5. Tt is
clear from Fig. S that u, increases with Re, and ¢.
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FiG. s. Effect of slip coefficient on normalized slip velocity
for Re,, = 0.1 and 0.2 based on entrance Reynolds number
for channel flow.
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FiG. 4. Velocity profiles for Re,, = 1.0 for channel flow.

The increase in u, for an increase in Re,, from 0.1-1
is negligibly small. However, there is a significant
shift at an Re, = 5. u, approaches an asymptotic
value as ¢ increases indicating an upper bound on ¢.

4.2. Pressure gradient

Inspection of Fig. 6 reveals that the magnitude of
pressure gradient P, increases with x/h for an
entrance Reynolds number equal to 1000. The effect
of slip coefficient ¢, at the porous (membrane)

725

08

07—

Rw
50
06— ol

04

Uy

Q.34

02+

[o2)

& L i i H
34 ot Q.2 o3 04 o5 08

¢

Fi1G. 5. Effect of slip coefficient on normalized slip velocity
for Re,, =0.1,1.0 and 5.0.

surface is to decrease P, and the larger the value of ¢,
the greater the reduction in the value of P. This
behavior is connected with the diminution in the
shear stress at the membrane surface which, in turn,
is a consequence of the fact that the velocity no
longer need be zero at that surface. As was observed
in the case of velocity profiles, an increase in Re,,
would result in a decrease in shear stress so that P
would alsc decrease.

4.3. Concentration polarization

Figure 7 presents the results of the finite difference
solution, plotted in a manner suggested by Brian [5]
for ¢ =0 and Re,, = 0.2 with a5 =01, 02, 0.5, 1.0
and 2.0. The plot agrees very well with that of Brian
except when a, = 0.1, which indicates a higher value
of concentration polarization C,. This is because the
effect of wall Reynolds number has not been ignored.
When Re, is not negligibly small, that is, for
ultrafiltration membranes which have high flux rates,
there is rapid convection of solutes to the membrane
surface resulting in an increase in C,. This difference
is insignificant for @, =02 and disappears com-
pletely for higher values of «,.

For any value of 5, C,, is seen to increase with the
fraction of water removed (or longitudinal position)
¢, and then to level out at an asymptotic value of C,,.
The asymptote corresponds to the far-downstream
solution for the polarization, and it is approached at
relatively low values of ¢ when «, is large. In
contrast, at low values of o, the asymptotic
polarization is approached only as ¢ nears unity.
When the value of C, is substantially below the
asymptotic value, the solution corresponds to the
entrance region solution. Similar plots for ¢ = 0.1
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F1G. 6. Effect of slip coefficient on axial pressure gradient for Re, = 0.1
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FI1G. 7. Concentration polarization as a function of fraction of water removed (or longitudinal position) ¢, for ¢ = 0.

and 0.5 are shown in Figs. 8 and 9, respectively. The
effect of ¢ is to decrease the value of C, this decrease
being more significant when «, is small. Thus, the
value of C, when ¢ = 0.5 is lower as compared to
when ¢ =0 for a particular value of a, The
pronounced effect of ¢ when o, is small is due to the
fact that changes in both parameters result in similar
responses. This is discussed in detail below.

The effect of ¢ can be further observed from Fig.
10 which is a plot of (C,}¢/(C,),~¢ vs ¢ for ay = 0.1,
0.2, 0.5, 1.0 and 2.0 when ¢ = 0.10 and 0.60. For any
value of a,, the normalized polarization seen to
decrease with increase in ¢, and the decrease is
significant when a, is small. Thus, the reduction in
(C)¢/(C,)p~0o is nearly five-fold when «y = 0.1 as
compared to a slightly more than one-fold reduction
when o, = 2.0 at ¢ =0.5 and £ = 0.60. It is to be
noted that the effect of ¢ on polarization is similar to
that of a, suggesting a possible reason for the effect
of ¢ on reduction of polarization. An increase in the
value , indicates an increase in the value of the

diffusion coefficient D, that is, an increase in back-
diffusion of solute from the membrane surface for the
same values of v, and h. It follows from this that slip
velocity at the membrane surface promotes back-
diffusion resulting in a lower value of C, and,
consequently, a higher value of flux rate.

Possible explanations for slip-velocity-induced
back diffusion are:

(1) that the velocity profiles are flatter due to a
decrease in the velocity gradient at the mem-
brane surface ; and

(2) that the fluid in the boundary region just
below the permeable surface is pulled along by
flow above the porous surface, thus, enhancing
diffusion of solutes.

The effect of ¢ on normalized polarization is also
shown in Fig. 10. Thus, when 10% of the water is
removed (¢ = 0.10), the normalized polarization has
a lower value as compared to when & = 0.60. When
oo == 0.1, however, the trend is reversed. This is due
to the fact that polarization for ¢ = 0 is very large
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Fii. 8. Concentration polarization as a function of fraction of water removed {or longitudinal position) ¢, for ¢ = 0.1
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FiG. 9. Concentration polarization as a function of fraction of water removed {or longitudinal position) &, for ¢ = 0.5

when ¢ = 0.60 as compared to when & = 0.10, and «,
due to its low value has very little effect on reducing
polarization.

5. CONCLUSIONS

The present study provides fundamental infor-
mation for the analysis of ultrafiltration systems. The
velocity profiles flatten and approach plug flow as
the slip coefficient increases due to a decrease in the
wall shear rate. Slip velocity increases with slip
coefficient and approaches an asymptotic value.
Concentration polarization at the membrane surface
is reduced as slip coefficient increases and the effect is
more significant for low values of the normalized
diffusion coefficient. It is observed that the effect of
slip coefficient on polarization is to promote diffusive
transport of solute molecules from the membrane
surface to the bulk solution. The net effect of this is
to reduce polarization and increase flux rates

through the membrane. Typical values indicating
one to three fold decrease in polarization with slip
coefficient are shown in Table 1.

Table 1. Effect of slip coefficient on concentration
polarization
¢ ¢ R c, Lo
0.25 0 0.1 170 46.0
1.0 0.59 0.6
0.1 0.1 100 250
1O 0.52 0.55
0.5 0.1 6.5 13.3
1.0 0.44 0.49

*C, is the average concentration polarization over the
length of the membrane channel and it corresponds to
when 50%;, of the water has been removed, that is, when the
average value of ¢ is equal to 0.25. According to Brian [5],
C, is very nearly the same for the constant flux and the
variable flux solutions.

Average values of polarization have been used since, in
this analysis, permeation flux has been considered inde-
pendent of the fongitudinal position {see equation 7).
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F1G. 10. Effect of slip coefficient on normalized con-
centration polarization.

Anomalous behavior between experimental results
and theoretical analysis based on the steady-state,
gel polarization model (GPM) has been reported by
Blatt et al. [4] and Porter [9]. The flux rates are
reported to be 15-30% lower for macromolecules
and one to two orders of magnitude less for colloids
on the basis of the GPM. The theoretical results in
this study have not been compared with exper-
imental data. However, substantial reduction in
polarization in the presence of velocity slip strongly
indicates one possible reason for the above men-
tioned anomalous behavior.

The effect of slip coefficient on promoting back
diffusion and the fact that slip coefficient is de-
pendent on the surface characteristics of the mem-
brane may suggest different ways of fabricating
membranes. As well, the pressure drop along the
channel length is reduced with an increase in slip
coefficient resulting in reduced pumping requirement
and operating costs.
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APPENDIX
(A} Constants defined in equations (32) and (33}

X
by = =3
by = $1(1+29),
¢ =1
€3 = ay—dy,

C3 = ay—dy,

ey = 19+ 63¢ + 14097 + 105¢°),

a; = {1084 756¢ + 168062 + 1260¢%),
a, = 32 (105 +420¢ +420¢2),

ay = (106 +420¢ +420¢42),

(B} The finite difference solution

In order to solve equation {20) by a finite difference
scheme, a grid is chosen such thatj=1atdi=0,j=2at i
=AAd, j=3 at A=2Al and so on to j=NJ at 2=l
Similarly, m = 1 at ¢ = 0. A4 and A¢ are increments in the y
and x-directions, respectively. At j= NJ, A = (NJ—1)AL
andatm= NM, ¢ = {(NM— DAL

The finite difference analogues of derivatives in equation
(20) are

2:C C; =2C; ,+C;.
— AT Lm },';+ g 1,m! (B.1)
0 | (A2)
l _CrimmCium (B.2)
O A jum 2A%) -
?_g - Cj.m_cj,m—} ) {B})
& im Al

Substituting equations (B.1)-(B.3) in equation (20) gives:

AiCia\m+ B;Ci Wt EiCiy = FiCj oy = Fy,
for 2<j<s NJ—-1, (B4)
where
-V %y
A= o — . B.S)
TU2AN (AP {
2
. (B.6)
PAE (ALY
14 %o
) e — N B.7
E; 2(AA) (AR (B.7)
U
F;= E-Cm_,. (B.8)
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Equation (B.4) is implicit in 4 with three unknowns C;_ ,,,
C;m and C;,,, at the unknown axial distance level m.
Using the Taylor series expansion around j = 1 and j = NJ,
boundary conditions, equations (22) and (23), can be

writt, H M 1 oo -
written in finite difference form as:

Cl,m = iCZ,m_%C:i,m’ (B.9)

(@Cy, - 1m ™ Cys- 2,m)' (B- 10)

(B.11)

The above system of simultaneous equations can be
represented by a tridiagonal coefficient matrix and is solved
most efficiently by the method of Thomas [10]. The
solution procedure is as follows:

(1) Start at m =2 and solve for C;,. Form coefficients
for j=2,...,NJ—1 and solve for C,,...,Cy,_, by
Thomas. Then, solve for C, and Cy, using the bound-
ary conditions, equations (B.9) and (B.10).

{(2) Step to next m.

It was found that convergence of the numerical solution
was satisfactory for grid size of 0.05 for 4 and 0.001 for ¢.
(C

Thomas algorithm for tridiagonal matrix
1ation (R4) is

quation (B4)is
AjC}-,l,,,+BjCj+EjCjH‘m =F;

for2<j< NJ—lwithd,=Ey;,_,=0.
The algorithm is as follows:

)
E

AE, .
B;=B,— 2, with p, = B, (C.1)
’ Ijj— 1
and
Fi—Ay; . F
i iri-1 . 2
y; =——=20 0 with y, = —. (C2)
! B; ‘B
The values of concentrations are then computed back-
wards from C;_,—C; as follows:
Ni-i 2 S
Cxrotm =7Vys-1 (C3)
and
ECiiim
Cim=1;— Zizitim (C4)
B;

INFLUENCE DE LA VITESSE DE GLISSEMENT, A LA
SURFACE D'UNE MEMBRANE, SUR L’'ULTRA-FILTRATION—1.
SYSTEME D’ECOULEMENT EN CANAL

Résumée—On étudie en détail 'influence de la vitesse de glissement sur une surface poreuse, pour une

membrane plane paralléle & un écoulement établi. On examine l'effet du coefficient de glissement sur les

profils des vitesses, le gradient de pression et la polarisation de concentration dans I'ultra-filtration. Les

équations du mouvement sont résolues par la méthode de perturbation. L’¢quation de diffusion couplée
dans la couche limite est résolue par la méthode des différences finies.

EINFLUSS DER SCHLUPFGESCHWINDIGKEIT AN EINER MEMBR.ANOBERFL.'/\CHE
AUF DIE ULTRA-FILTRATIONSLEISTUNG I. KANALSTROMUNG

Zusammenfassung— Der EinfluB der Schlupfgeschwindigkeit an einer pordsen Oberfliche wurde unter

der Annahme voll entwickelter Stromung fur ein System mit parallelen, ebenen Membranen ausfihrlich

untersucht. Der EinfluB des Schlupfkoeffizienten auf Geschwindigkeitsprofile, Druckgradienten und

Konzentrationspolarisation bei Ultrafiltration wurde untersucht. Die Bewegungsgleichungen wurden

nach der Methode des reguldren Storungsansatzes gelost. Die gekoppelte Gleichung fir die Diffusion in
der Grenzschicht wird mittels eines finiten Differenzschemas gelost.

BJIUAAHHUE CKOPOCTH CKOJIBXXEHHA HA MOBEPXHOCTH MEMBPAHDI
HA VJIbBTPAGHUJIBTPALIMIO. 1. TEYEHHUE B KAHAJIE

Annoraums — [IpoBeaeHo netanbHOE HCCACNOBAHHE BJIMAHMA CKOPOCTH CKOJIbXEHHA Ha IOPHCTOM
MOBEPXHOCTH B CHCTEME NapajUleNbHLIX NJIOCKHX MeMOpaH Ha yasTpadunbTpau#io Npu JONYLUCHHH,
4TO TCYEHHE ABJIACTCA NMOJHOCTBIO Pa3BHTHIM. MCClEIOBaHO BIHAHHE KOIPODHIIMEHTA CKONbXEHHS Ha
npodHiIH CKOPOCTH, TPaAHEHT AABJECHHS M pacnpelejicHHE KOHLUECHTPAUHH NMPH yJIbTPaQHIibTPaUHH.
YpaBHEHHS OBIKEHHA DPEIICHbB! METOAOM PETYIAPHBIX BO3MYIlEHHH. B3aMMOCBA3aHHOE ypaBHEHHE
Judpy3un B MOrpaHHYHOM CJI0€ PEUIAETCA C MOMOIIbIO KOHEYHO-PA3HOCTHON CXEMBI.



