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Abstract-The intluence of slip-velocity at a porous surface is studied in detail for a parallel Ilat 
membrane system assuming fully-developed How. The effect of slip coefficient on velocity profiles, 
pressure gradient and concentration polarization in ultrafiltration is examined. The equations of motion 
are solved by the regular perturbation method. The coupled diffusion equation in the boundary layer is 

solved using a finite difference scheme. 

NOMENCLATURE 

Aj,Bj,Ej,Fj, coefficients in the matrix 
equations; 

c, solute concentration ; 

CO? inlet solute concentration ; 
&r solute concentration at membrane surface; 
? = co/( I -t), mixing-cup average solute 

concentration ; 
C, c/co ; 

c&- I, concentration polarization ; 
o, normalized concentration 

polarization ; 
solute diffusivity; 
half-width of channel; 
membrane permeability; 
an integration constant ; 
pressure in the channel at a given value of 
.Y ; 
inlet pressure in channel; 

(PO-P,MP&Y~); 
v&/D, Peclet number ; 
4ti,/r: Reynolds number for flow entering 
the channel; 
u,h/v, wall Reynolds number; 
velocity component in x-direction ; 
average velocity over the channel at 
channel inlet; 
average velocity over the channel at a given 
value of x ; 
WG ; 
(u/ii,&=,,, normalized slip velocity; 
(~/ti),,=~, normalized slip velocity; 
velocity component in y-direction ; 
velocity of fluid through membrane; 
v/t,, ; 
axial distance from channel entrance; 
distance normal to phase boundary. 

Greek symbols 

l/Pe, normalized diffusion coefficient; 
surface characteristic of membrane; 
parameters used in numerical calculations 
&/Go ; 
yJh ; 
viscosity; 
kinematic viscosity ; 
v,uJii,h = QRe,.ujReh, fraction of water 
removed at a given value of .Y ; 
solution density; 
k’!2Jcd~, slip coefficient; 
stream function. 

Superscripts 

‘, “, “I, lst, 2nd and 3rd-order derivatives. 

1. INTRODUCTION 

THE HIGH flux nature of the skin type, anisotropic 
ultrafiltration membranes results in the rapid build- 
up of solutes at the membrane surface leading to the 
formation of a polarized gel-layer. This phenomena, 
often referred to as concentration polarization, is 
highly flux-limiting and, consequently, has been 
studied extensively [4, 71. 

Brian [SJ solved the problem of concentration 
polarization for low molecular weight soIutes (re- 
verse osmosis) assuming laminar flow in a channel 
with parallel flat membranes. Infinite-series and finite 
difference solutions of the diffusion equation in the 
boundary layer were obtained. The results of the two 
solutions were in excellent agreement. In order to 
solve the diffusion equation, the velocity field must 
first be specified. Brian used the solution of Berman 
[3], modified to exclude the terms containing the 
wall Reynolds number which is negligibly small for 
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reverse osmosis. In ultrafiltration, where the flux 
rates are considerably higher, wall Reynolds number 
is not negligible and, hence, cannot be ignored. 

Berman obtained a first-order perturbation sol- 
ution for the velocity field in the case of a 
homogeneous fluid Rowing between parallel porous 
walls with a uniform withdrawal flux through the 
wall. In his analysis he tacitly assumed the zero-slip 
boundary condition which characterizes flows with 
solid bounding walls. Beavers and Joseph [l], 
however, showed the existence of a slip velocity at a 
porous surface on the basis of theoretical arguments 
and experimental verification. In later studies, 
Beavers et al. [2] and Kohler [6] showed that their 
experimental results agreed remarkably well with 
analytical predictions, thus lending further support 
to the slip flow model. 

The present work is an attempt to study the effect 
of non-zero tangential velocity (the so-called slip 
velocity) on velocity field, pressure gradient and 
concentration polarization in ultrafiltration process- 
ing. The ramificatio~ls of slip velocity in predicting 
flux rates in ultrafiltration are examined. 

The equations of motion in two-dimensions are 
solved by a first-order perturbation method assum- 
ing slip velocity at the membrane surface. The 
diffusion equation is solved by a finite difference 
technique. The results of the solutions are discussed 
in Section 3 and the conclusions are presented in 
Section 5. Analysis of the tubular flow system is 
given in a subsequent paper [I I]. 

2. MATHEMATICAL FORMULATION 

2. I. The e~~~t;u~?s ~~~~tjo11 
Consider a case in which fluid containing macro- 

molecular solutes flows within the channel between 
two parallel, flat ultrafiltration membranes, as shown 
in Fig. 1. The width of the membranes is assumed to 
be very large relative to the membrane spacing, and 
product water is assumed to be permeating both the 
upper and the lower membranes; thus the Aow will 
be assumed to be two-dimensional and symmetrical 
about the midplane of the channel of half-thickness 
/I. This implies that the flow is assumed to be 
laminar, and natural convection effects are assumed 
to be negligible. It is also assumed that fluid is 
incompressible and operation is steady-state. 

- 
Feed 

Permeate 

c Y 
--- ________~_ L 

Under the assumed conditions, the pertinent 
equations of linear momentum and continuity with 
the requisite boundary conditions are: 

ali v au 1 ZP u--f--= ---+v ax h an p ax 
do v a0 I ap 

u-+--z= ----f,, 
ax h da ph S3. 

(5) 

where 

u(x, 0) = 0, (6) 

v(x, * 1) = v,, (7) 

2-c’. 
h 

Equation (4) is the slip-flow boundary condition 
of Beavers and Joseph [I]. The slip velocity at the 
membrane surface is proportional to the shear rate 
at the permeable boundary. This slip velocity is 
connected with the presence of a thin layer of 
streamwise moving fluid in the boundary region just 
below the permeable surface. The fluid in this layer is 
considered to be pulled along by the Row above the 
porous surface. c$(= k”*/orh) is the slip coefficient 
where k is the permeability of the membrane matrix, 
and c( is a dimensionless constant dependent on the 
surface characteristics of the membrane. When k = 0, 
equation (4) reduces to the no-slip condition appro- 
priate to a solid wall. 

Equation (7) is the condition for constant per- 
meation flux. It is assumed that this is valid. No 
solutions have been obtained and/or reported for 
variable permeation flux along the longitudinal 
position for high wall Reynolds numbers. 

For a two-dimensional incompressible flow, a 
stream function $(x, A) exists such that, 

and the continuity equation (3) is satisfied. 
A suitable choice of stream function is, 

ljfx, >.) = [lzu, - z?,,,xJf’(i:), (10) 

giving for the velocity components by equations (8) 

and P), 

u(x, a) = ii, - y I I .f’V”), 
Permeate 

Fw. 1. Parallel flat membranes IJO”) = vJ(a). (12) 
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In these equations f’(A) is some function yet to be 
determined. Under the assumption of constant 
permeation flux u,, the y component of velocity, u, 
becomes a function of 1 only. Using the standard 
analysis. equations (I) and (2) can be rephrased: 

where 

where 

Re, = $. 

This equation can be integrated to 

Re,( f2 - 8”) +,f”’ = K, (14) 

where K is the constant of integration. 
The new set of boundary conditions is similarly 

obtained by substituting equations (I 1) and (12) in 
equations (4)-(7). Thus 

f“( I ) = - #f“‘( 1 ), (1.5) 

,f”(O) = 0, (16) 

.PP) = 0, (17) 

,f’(l) = 1. (18) 

Equation (14) is the so-called Falkner-Skan 
equation. The solution using these boundary con- 
ditions is described in Section 3.1. 

2.2. The &ffusiort equatiorl 
It is assumed that the solute concentration is 

uniform over the channel cross-section at the 
channel inlet. As the solution flows down the channel 
and permeate is removed through the membranes, a 
solute-concentration profile devetops and the solute 
coi~centration at the membrane surface increases 
along the length of the channel. Assuming steady- 
state operation and both diffusion and convection of 
solute in the transverse and longitudinal directions, a 
solute material balance on a differential volume 
element yields the following partial differential 
equation (in dimensionless form) 

where 

Re - 4uoh 
UO 11 

For 0, CC ii,, c2 is very small and hence the second 
term on the right-hand side of equation (19) is 
negligible. This shows that diffusion in the longitu- 
dinal direction is negligibly small. Equation (19) can 
then be rewritten as: 

(20) 

1 
a0 = pe 

The boundary conditions are: 

C(0, A) = 1, (211 

(22) 

Equation (23) is the so-called gel polarization 
model. It assumes that the membrane is completely 
retentive to solute and that the convective flow of 
solute to the membrane surface is equal to the 
diffusive back-transport of solute from the con- 
centrated polarized layer to the bulk-solution. This 
steady state is reached in less than a minute [4]. 

The solution of equation (20) with the appropriate 
boundary conditions is reported in the Appendix 
incorporating the results of velocity profiles U and V, 
obtained from Section 3.1. 

3. METHODS OF SOLUTION 

3.1. The perturb&m solutiorr 
The third-order, nonlinear, ordinary differential 

equation (14), suggests a perturbation solution if the 
perturbation parameter Re,, is small. Equations 
exhibiting certain essential features like non- 
linearities often preclude exact analytical solutions. 
Even if the exact solution of a problem can be found 
explicitly, it may be useless for mathematical and 
physical interpretation or numerical evaluation. 
Thus, in order to obtain information about solutions 
of equations, we are forced to resort to apptoxi- 
mations, numerical solutions or combinations of 
both. Foremost among the approximation methods 
are regular perturbation methods (see, e.g. Nayfeh 
[8]). According to these techniques, the solution is 
represented by the first few terms of a perturbation 
expansion, usually not more than two terms. The 
expansions may be carried out in terms of a 
parameter which appears naturally in the 
equations-e.g. the wall Reynolds number, Re,,,, in 
this case-or which can be artificially introduced for 
convenience. 

The solution of equation (14) for small Re, may 

be expressed in a power series as 

f’(a) = .fb(n)+,f;(/I)Re,,. 

+.f~(A)Re~+.~(Re;t)+.. (24) 

and 

K = K,fK,Re,,+K,Re;l+K,Rei,+... (25) 

Here the ,J,‘s and K,‘s are taken to be independent of 
Re,. Substituting equations (24) and (25) in equation 
(14) and collecting terms of like powers of Re,, leads 
to the following set of equations: 

zero order : 

,f;” = K,, (26) 
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first order: 

1;“’ = K, -,g + f; fol’, (27) 

second order: 

f;” = K2+,~bf;“+,f;.f~‘-2f~,f;‘. (28) 

The boundary conditions to be satisfied by the /i’s 
are from equations (IS)-( 18): 

Il(1)+W(1) = 0, (29) 

./i(O) = C’(O) = 0, (30) 

/o(J) = 1, 
f;(l) = 0, 

for II > I. (31) 

Equations (26))(28) are ordinary, linear, third-order 
equations which are readily solved to give successive 
approximations to ,/‘(i,). 

The first-order perturbation solution gives for ,f’(n) 
and K: 

1’(i) = (b,i”+h,+~(c,i’+c,a~+c,i) 

and 

(32) 

9Re,c, 
K = -3~;‘~+~, (33) 

where b,, b,, c,, c2, c3 and c.+ are functions of 4 and 
are defined in the Appendix. 

For the no-slip velocity case, that is, when 4 = 0, 

equations (32) and (33) reduce to the solution of 
Berman [3]. Berman, using a second-order per- 
turbation calculation, found the coefficient of Rei in 

K to be 0.02. Thus, a first-order solution is 

acceptable. 
The velocity profiles are obtained by substituting 

equation (32) in equations (I 1) and (12). Hence 

I -~~j;)j(Zb,/;‘+b,) 
/’ _ 

-~(7c,i6+3c2a2+c,),, 1 (34) 

V= (b,iJ+b2i.)-~(cli7+c2~3+cJ). (35) 

Normalized axial component of velocity can be 
readily attained from equation (34) to give 

; = (3b,12+b2)-~(7c,R6+3c2/12+c,), (36) 

where 

u(i)di = 1 -4$-g = l-5, (37) 

Normalized pressure gradient P, is obtained from 
equations (I) and (2) and (14) as 

p = PO-P-Y I = _z&E$)‘!. (38) 
ZPUO 

3.2. Thefinite d@reuce solution 
The diffusion equation in the concentration bound- 

ary layer (20) with the velocity field obtained from 

equations (34) and (35) is solved by a finite 
difference scheme implicit in A. The solution pro- 
cedure is outlined in the Appendix. 

4. RESULTS AND DISCUSSION 

4. I. Velocity profiles 

Figure 2 is a plot of u/G, vs i. for an entrance 
Reynolds number of 1000 and a longitudinal 
position u/h, equal to 500. The curves are plotted for 
slip coefficient, C$ equal to 0, 0.1 and 0.5, and a wall 
Reynolds number, Re, of 0.1. According to Kohler 
[6], values of C$ up to 0.5 are reasonable. As expected, 
the velocity at the membrane surface (A = I) is 0 
when (b is 0. As the slip velocity increases with 
increasing 4, the wall shear decreases and the 

profiles become flatter, approaching those for plug 
tlow 

1.6 Rw=Ol 
R,=IOOO 

x/h=500 

FIG. 2. Velocity profiles for Ke, = 0.1 based on entrance 
Reynolds number for channel Row. 

Evidence of the effect of Q, on normalized slip 
velocity UP is shown in Fig. 3. up increases with 4 
and appears to approach an asymptotic value. uf 
decreases as x/h increases indicating that at a point 
further downstream, the slip velocity is decreased. A 
similar plot at a wall Reynolds number of 0.2 is also 
shown. It is easily seen that u,” is considerably 
reduced when Re, increases from O.l-0.2. 

Velocity profiles in the form u/ii vs 1 are plotted in 
Fig. 4. This is similar to that for u/U, vs i except that 
it is independent of entrance Reynolds number and 
longitudinal position. This is evident from equation 
(36). The velocity profiles are essentially independent 
of wall Reynolds number except when Re, = 5. It is 
clear from Fig. 5 that u, increases with Re, and 4. 
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- R,=oi 
------ Rwz*.* 

R* = 1000 

FIG. f. Effect of slip coefficient on normalized slip velocity 
for Re, = 0.1 and 0.2 based on entrance Reynolds number 

for channel Row. 

FIG. 4. Velocity profiles for Re, = I .O for channel flow. 

The increase in II, for an increase in Re, from 0.1-l 
is ne~ig~bly small. IIowever, there is a significant 
shift at an Re, = 5. us approaches an asymptotic 
value as (p increases indicating an upper bound on $. 

4.2. Pressure gradient 
Inspection of Fig. 6 reveals that the magnitude of 

pressure gradient P, increases with x/h for an 
entrance Reynolds number equaf to 1000. The effect 
of slip coefficient (6, at the porous (membrane) 

0 0.2 03 0.4 05 

cp 

5 

FIG. 5. Effect of slip coefficient on normalized slip velocity 
for Re, = 0. I, 1 .O and 5.0. 

surface is to decrease P, and the larger the value of 4, 
the greater the reduction in the value of P. This 
behavior is connected with the diminution in the 
shear stress at the membrane surface which, in turn, 
is a consequence of the fact that the velocity no 
longer need be zero at that surface. As was observed 
in the case of velocity profiles, an increase in Re, 
would result in a decrease in shear stress so that P 
would also decrease. 

4.3. Concentration polarization 
Figure 7 presents the results of the finite difference 

solution, plotted in a manner suggested by Brian [S] 
for $J = 0 and Re, = 0.2 with 01~ = O.f, 0.2, 0.5, 1.0 
and 2.0. The plot agrees very well with that of Brian 
except when a0 = 0.1, which indicates a higher value 
of concentration polarization C,. This is because the 
effect of wall Reynolds number has not been ignored. 
When Re, is not negligibly small, that is, for 
ultrafiltratjon membranes which have high flux rates, 
there is rapid convection of solutes to the membrane 
surface resulting in an increase in C,. This di’fference 
is insignificant for a0 = 0.2 and disappears com- 
pletely for higher values of a,,. 

For any value of Q, C, is seen to increase with the 
fraction of water removed (or longitudinal position) 
g, and then to level out at an asymptotic value of C,. 
The asymptote corresponds to the far-downstream 
solution for the polarization, and it is approached at 
relatively low values of 5 when a0 is large. In 
contrast, at low values of aO, the asymptotic 
polarization is approached only as 5 nears unity. 
When the value of C, is substantially below the 
asymptotic value, the solution corresponds to the 
entrance region solution. Similar plots for Qt = 0.1 



126 

5or 

4.0- 

RAJINDAR SINGH and ROBERT L. LAURENCE 

R, = 0.1 

R, = 1000 

0 100 200 300 400 500 600 700 BOO 900 1000 

x/h 

FK. h. Effect of slip coefficient on axial pressure gradient for Re,,. = 0.1 

0001 001 01 1.0 IO 100 

V3@ 

FIG. 7. Concentration polarization as a function of fractionof water removed (or longitudinal position) i, for I$ = 0 

and 0.5 are shown in Figs. 8 and 9, respectively. The diffusion coefficient D, that is, an increase in back- 

effect of 4 is to decrease the value of C,, this decrease diffusion of solute from the membrane surface for the 

being more significant when c(~ is small. Thus, the same values of u, and h. It follows from this that slip 

value of C, when 4 = 0.5 is lower as compared to velocity at the membrane surface promotes back- 

when qb = 0 for a particular value of ao. The diffusion resulting in a lower value of C, and, 

pronounced effect of 4 when c(~ is small is due to the consequently, a higher value of flux rate. 

fact that changes in both parameters result in similar Possible explanations for slip-velocity-induced 

responses. This is discussed in detail below. back diffusion are : 
The effect of 4 can be further observed from Fig. 

10 which is a plot of (C,)~/(C,),,,=, vs 4 for a,, = 0.1, 
0.2, 0.5, 1.0 and 2.0 when 5 = 0.10 and 0.60. For any 
value of cue, the normalized polarization seen to 

decrease with increase in 4, and the decrease is 
significant when a, is small. Thus, the reduction in 
(C,J$/(C,),,=, is nearly five-fold when a0 = 0.1 as 
compared to a slightly more than one-fold reduction 
when c(,, = 2.0 at 4 = 0.5 and 5 = 0.60. It is to be 
noted that the effect of 4 on polarization is similar to 
that of a0 suggesting a possible reason for the effect 
of 4 on reduction of polarization. An increase in the 
value a, indicates an increase in the value of the 

(1) that the velocity profiles are flatter due to a 
decrease in the velocity gradient at the mem- 
brane surface; and 

(2) that the fluid in the boundary region just 
below the permeable surface is pulled along by 
flow above the porous surface, thus, enhancing 
diffusion of solutes. 

The effect of t on normalized polarization is also 

shown in Fig. 10. Thus, when 10% of the water is 
removed (5 = O.lO), the normalized polarization has 
a lower value as compared to when < = 0.60. When 
a0 = 0.1, however, the trend is reversed. This is due 
to the fact that polarization for 4 = 0 is very large 
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FIG. 8. Col~cel~tratioll polarization as a function of fraction of water removed (or ~ollgitudinal position) .‘, for d, = 0.1 

727 

FIG. 9. Concentration polarization as a function of fraction of water removed (or longitudinal position) i;, for 6, = 0.5. 

when < = 0.60 as compared to when t = 0.10, and c(~ through the membrane. Typical values indicating 
due to its low value has very little effect on reducing one to three fold decrease in polarization with slip 
polarization, coefficient are shown in Table 1. 

5. CONCLUSIONS 

The present study provides fundamental infor- 
mation for the analysis of ultrafiltration systems. The 
velocity profifes flatten and approach plug Row as 
the slip coefficient increases due to a decrease in the 
wall shear rate. Slip velocity increases with slip 
coefficient and approaches an asymptotic value. 
Concentration polarization at the membrane surface 
is reduced as slip coeficient increases and the effect is 
more significant for low values of the normalized 
diffusion coefficient. It is observed that the effect of 
slip coefficient on polarization is to promote diffusive 
transport of solute molecules from the membrane 
surface to the bulk solution The net effect of this is 
to reduce polarization and increase flux rates 

Table I. Eifect of slip coefficient on concentration 
polarization 

5 (P *o ci, c; 

0.25 0 0.1 17.0 46.0 
I .o 0.59 0.0 

0.1 0.1 10.0 25.0 
1.0 0.52 0.55 

0.5 0.1 6.5 13.5 
1.0 0.44 0.49 

*C, is the average concentration polarization over the 
length of the membrane channel and it corresponds to 
when SOY,,‘, of the water has been removed_ that is, when the 
average value of < is equal to 0.25. According to Brian [S], 
C, is very nearly the same for the constant Rux and the 
variable flux solutions. 

Average values of polarization have been used since, in 
this analysis, permeation Rux has been considered inde- 
pendent of the ~i~g~tud~nal position (see equation 7). 
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FIG. 10. Effect of slip coefficient on normalized con- 
centration polarization. 

Anomalous behavior between experiments results 
and theoretical analysis based on the steady-state, 
gel polarization model (GPM) has been reported by 
Blatt et al. [4] and Porter [9]. The flux rates are 
reported to be IS-30% lower for macromolecules 
and one to two orders of magnitude less for colloids 
on the basis of the GPM. The theoretical results in 

this study have not been compared with exper- 
imental data. However, substantial reduction in 
polarization in the presence of velocity slip strongly 
indicates one possible reason for the above men- 
tioned anomalous behavior. 

The effect of slip coeffcient on promoting back 
diffusion and the fact that slip coeFicient is de- 
pendent on the surface characteristics of the mem- 

brane may suggest different ways of fabricating 
membranes. As well, the pressure drop along the 
channel length is reduced with an increase in slip 
coefficient resulting in reduced pumping requirement 
and operating costs. 
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APPENDIX 

(A) Corxtartfs dejned in eyuatiorzs (32) urrd (33) 

b, = -5, 

b, = $x(I +I@), 

c, = xl, 

c2 = q-a ,I 

c3=a,-u,, 

c* = x3(9 + 63$ + 1 JO@ + t 0.5@), 

a, = ~3(10~+756~+ 1680f$~f 1?60#~), 

a2 = X2( 105 “t4204 +4X@), 

a3 = ~2(106f420~+420~2), 

I 
x=---- 

1+34 

In order to solve equation (20) by a finite difference 
scheme, a grid is chosen such that j = 1 at d = O,,j = 2 at % 
=A& j=3 at E.=2Afi and so on to j=NJ at i.= I. 
Similarly, m = 1 at < = 0. Ai and A< are increments in they 
and s-directions, respectively. At j = NJ, d = (NJ- I)An 
andatm=NM,<=(NM-])A<. 

The finite difference analogues of derivatives in equation 
(20) are 

S2C’ CJ+*,,-~C~,,+C~-I., 

a2 (Al.)* ’ 
(B.1) 

j.m 

dC _ ,+I.m-C,-I.l?l C 

i?i Z(Ai) ’ 
(B.7) 

,.m 

c:c _ cj.m-cj.m- 1 

^_- 
06 jsm A< 

(8.3) 

Substituting equations (B.l)-(B.3) in equation (20) gives: 

AjCj-,.,+B,C,,,1_E,Cj+ 1.m = FjC,,,-I = Fj, 
for 2<j<NNI-I, (B.4) 

where 
--c’ “0 

Ai=~j-(M)Z’ 

(B.6) 
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Equation (B.4) is implicit in I with three unknowns Cj_ I,m, 

Cj,T and Cj+ 1.m at the unknown axial distance level m. 
Usmg the Taylor series expansion around j = I and j = NJ, 
boundary conditions, equations (22) and (23), can be 
written in finite difference form as: 

c ?C ‘c ,,m = 7 2.m-J 3.m3 (B.9) 

c,y,,,, = -i [3a,_2(A1)l (4Cv,m,.,-C.v-2,,). (B.10) 

The initial condition, equation (21), is replaced by 

Cj,m-* = I. (B.11) 

The above system of simultaneous equations can be 
represented by a tridiagonal coefficient matrix and is solved 
most efficiently by the method of Thomas [lo]. The 
solution procedure is as follows: 

(I ) Start at m = 2 and solve for C,,,. Form coefficients 
for j = 2,. _, NJ-l and solve for C,, , CNJ-, by 
Thomas. Then, solve for C, and C,, using the bound- 
ary conditions, equations (B.9) and (B.lO). 

(2) Step to next m. 

It was found that convergence of the numerical solution 
was satisfactory for grid size of 0.05 for 1 and 0.001 for <. 

(C) Tl~omas algorithm fix tridiagod matrix 

Equation (B.4) is 

AjCj_1,,+BjCj+EjCj+1,, = Fj, 

forZ<j< NJ-l withA,=EYJ_, =O. 
The algorithm is as follows: 

A,E,_, 
pj = Bj - pj_l , with Bz = B2, (C.1) 

and 
Fj-Ajyj-, F2 

Yj = 
Bj ’ with y2=K, 

cc.21 
2 

The values of concentrations are then computed back- 
wards from C,,_ ,&, as follows: 

C,., 1 .m = Ys., - 1 (C.3) 

and 

EjCj+ 1 m 
‘J,m = Yj - 7 

INFLUENCE DE LA VITESSE DE GLISSEMENT, A LA 
SURFACE D’UNE MEMBRANE, SUR L’ULTRA-FILTRATION-l 

SYSTEME D’ECOULEMENT EN CANAL 

R&urn&On &udie en d&tail I’influence de la vitesse de glissement sur une surface poreuse, pour une 
membrane plane paralltle B un &coulement Ctabli. On examine I’effet du coefficient de glissement sur les 
profils des vitesses, le gradient de pression et la polarisation de concentration dans I’ultra-filtration. Les 
tquations du mouvement sont resolues par la mkthode de perturbation. L’iquation de diffusion couplee 

dans la couche limite est rtsolue par la mkthode des diffkrences finies. 

EINFLUSS DER SCHLUPFGESCHWINDIGKEIT AN EINER MEMBRANOBERFLACHE 
AUF DIE ULTRA-FILTRATIONSLEISTUNG I. KANALSTRijMUNG 

Zusammenfassung-Der EinfluD der Schlupfgeschwindigkeit an einer portisen Oberfllche wurde unter 
der Annahme voll entwickelter Stramung fir ein System mit parallelen, ebenen Membranen ausftihrlich 
untersucht. Der Einflun des Schlupfkoeffizienten auf Geschwindigkeitsprofile, Druckgradienten und 
Konzentrationspolarisation bei Ultrafiltration wurde untersucht. Die Bewegungsgleichungen wurden 
nach der Methode des regullren Stlirungsansatzes gel6st. Die gekoppelte Gleichung f_ir die Diffusion in 

der Grenzschicht wird mittels eines finiten Differenzschemas geliist. 

BJIHJIHHE CKOPOCTkl CKOJIbXEHm HA I-IOBEPXHOCTM MEMliPAHbI 
HA YJIbTPAWiJIbTPA~HIO. 1. TErIEHWE B KAHAJIE 

Awncnwm-npoeene~o LleTaJlbHOe HcgenosaHHe BnHnHHn CKO~OCTH CKOJIbXCeHHn Ha IlOpHCTOfi~ 

IlOBepXHOCTH B CHCTeMe IIapaJlJleJlbHblX llJIOCKHX MeM6paH Hi3 y,IbT~&,JIbTpaUH,O IIpH AO,,yUeHHH, 

'IT0 TeYeHHe KBJIneTCn nOJIHOCTbW3 p3BHTblM. &CJIeAOBaHO BJlHnHHe K03f,@"UHeHTa CKO,IbT(eHHII Ha 

npo@i.ne c~opoc~ti, rpanHeHT nanneHwIl H pacnpelneneHHe KOHU~HT~~IUHH rrp~ ynbTpa@i.nbTpauiiH. 
YpaBHeHml ABHXCeHHn peLueHbl MeTOnOM pe4ynnpHbmr B03MyqeHHii. &miw3cen3aHme ypameHiie 

IIHwy3HHB nOr~HHYHOMCn~~~aeTCnCOOMb~~ KOHeWfO-PQ3HOCTHOkCXeMY. 


